

Department of Computer Engineering (Academic Year :2023-2024)

Course Code: CSC501 (Div B)					
Course Name: Theoretical Computer Science					
Course Teacher: Mrs. Sangeeta Parshionikar					
Course Outcomes (CO): At the End of the course students will be able to					
CO.1	Explain the concepts of finite automata in the context of Theoretical Computer Science.				
CO 2	Construct regular expressions (RE) for regular language and derive the equivalence of languages described by finite				
	automata and regular expressions.				
CO.3	Design context free grammars to recognize the language.				
CO.4	Design Pushdown Automata to recognize the language.				
CO.5	Develop an understanding of different types Turing Machines and applications.				
CO.6	Determine decidability and undecidability of computational problems with fundamental understanding				

Course Lesson Plan

Sr.	Proposed	Actual Date	Topics	CO	Teacher's Remark	HoD's Remark
No.	Date					
			Module No. 1 - Basic Concepts and Finite Automata			
1	11-07-23		Importance of TCS, Course Outcomes	1	Online Lecture	
2	13-07-23		Alphabets, Strings, Languages, Closure Properties.	1,2	Lecture	
3	14-07-23		Finite Automata and Finite State Machine (Divide by 3 – FSM)	1	Lecture	
4	18-07-23		DFA Definition, Transition Diagrams and Language recognizers examples	1	Online Lecture	
5	20-07-23		DFA – Design problems	1	Lecture	
6	21-07-23		NFA Definition and Design problems	1	Lecture	
7	25-07-23		NFA to DFA conversion.	1,2	Lecture	
8	27-07-23		NFA with e-transitions and NFA equivalence	1,2	Online Lecture	
9	28-07-23		Minimization of DFA	1,2	Lecture	
10	02-08-23		FSM with output: Moore Machine	1	Lecture	
11	03-08-23		FSM with output: Mealy Machine	1	Lecture	
12	04-08-23		Applications and Limitations of DFA	1	Lecture	
13	09-08-23		Importance of TCS, Course Outcomes	1,2	Lecture	
			Module 2 - Regular Expressions and Languages		Lecture	
14	10-08-23		Regular Expressions, RE and FA equivalence	1,2	Assignment 1	
15	11-08-23		Arden's Theorem	2	Lecture	
16	14-08-23		Regular Language (RL), Closure and decision properties of RL	1,2	Online Lecture	
	15-08-23		Independence Day			
	16-08-23		Parsi New Year			

SOCIETY OF ST. FRANCIS XAVIER, PILAR'S

FR. CONCEICAO RODRIGUES COLLEGE OF ENGINEERING

(Approved by AICTE & Affiliated to University of Mumbai)

Fr. Agnel Ashram, Bandstand, Bandra (W), Mumbai - 400 050.

Phone : (022) 6711 4000, 6711 4101, 6711 4104

Website : www.frcrce.ac.in • Email : crce@fragnel.edu.in

17	17-08-23	Pumping Lemma of RL	2	Flipped Class Activity
18	18-08-23	Pumping Lemma of RL	2	Assignment 2
		Module 3 - Grammars		Lecture
19	23-08-23	Grammars and Chomsky hierarchy	3	Assignment 3
20	24-08-23	Regular Grammar(RG), Left linear and Right linear Grammar	3	Lecture
21	25-08-23	Equivalence of RG and FA	3	Lecture
	29-08-23 to	Unit Test-1		
	31-08-23			
20	01-09-23	Context Free Grammar: Design	3	Lecture
21	06-09-23	Parse tree and Ambiguity	3	Quiz on Modules 2 & 3
22	07-09-23	Chomsky Normal Form	3	Lecture
23	08-09-23	Greibach Normal Form	3	Lecture
24	13-09-23	CFLs- Pumping Lemma	3	Assignment 4
25		Module 4 - Pushdown Automata(PDA)		Lecture
	14-09-23	Push Down Automata :Definition, transitions, Applications	4	Lecture
26	15-09-23	PDA-as generator, decider	4	Lecture
	19-09-23 to	Shri Ganesh Festival		
	22-09-23			
27	27-09-23	PDA-as acceptor	4	Assignment 5
	28-09-23	Anant Chaturdashi		
28	29-09-23	Deterministic PDA	4	Lecture
		Module 5 - Turing Machine (TM)		
	04-10-23	Turing Machine: Definition, Transitions	5	Quiz 2
29	05-10-23	Turing Machine as generator, decider	5	Lecture
30	06-10-23	Variants of Turing Machine, Universal TM	5	Lecture
	09-10-23 to	Unit Test-2		
	13-10-23			
		Module 6 - Undecidability		
31	16-10-23	Non-deterministic PDA, Decidability and Undecidability	6	Lecture

				Assignment 6	
32	19-10-23	Halting Problem, Recursive and Recursively Enumerable	6	Lecture	
		Languages			
33	20-10-23	Rice's Theorm, Post Correspondence Problem	6	Lecture	
	30/10	Dashahera			
	31/10	Course Exit Survey			
	17-10-23	Remedial Session			
		University ESE Examination			

Text Books:

- 1. John E, Hopcroft, Rajeev Motwani, Jeffery D. Ullman, "Introduction of Automata Theory, Languages and Computation, Pearson Edition
- 2. Michael Siper, "Theory of Computation", Cengage Learning
- 3. Vivek Kulkarni, :Theory of Computation", Oxford University Press. India

Reference Books:

- 1. J. C. Martin, "Introduction to languages and Theory of Computation", Tata McGraw Hill.
- 2. Kavi Mahesh, "Theory of Computation: A Problem Solving Approach", Wiley-India.

Course Instructor: Prof. Sangeeta Parshionikar