Lesson Plan

Branch: Computer Engineering Semester: I

Year: 2022-23

Course Title: Engineering Mathematics I	SEE: 3 Hours – Theory
Total Contact Hours: 36 Hours	Duration of SEE: 3 Hours
SEE Marks: 80 (Theory) + 20 (IA)	
Lesson Plan Author: Gajendra Singh	Date:
Checked By:	Date:

Prerequisites: Review of complex numbers – Algebra of complex number, Cartesian, Polar and Exponential form of complex number

Syllabus:

1. Complex Numbers

- Statement of D'Moivre's theorem
- Expansion of sine and cosine function from power to multiple and from multiple
- to power
- Powers and roots of complex numbers

2. Hyperbolic functions and Logarithm of a complex number

- Circular and hyperbolic functions, inverse circular and inverse hyperbolic functions, separation into real and imaginary parts
- Logarithm of a complex numbers, separation of real and imaginary parts of logarithmic functions

3. Partial Differentiation

- Functions of several variables, partial derivatives of first and higher order, differentiation of composite functions
- Euler's theorem (with proof) and its deductions for homogeneous functions of two Variables

4. Applications of partial differentiation and successive differentiation

- Maxima and minima of functions of two variables and Lagrange multiplier of functions of two variables
- nth derivative, Leibnitz theorem without proof and problems

5. Matrices

- Types of matrices (symmetric, skew-symmetric, hermitian, skew-hermitian, orthogonal and unitary), Rank of a matrix using row-echelon form, normal form and PAQ form
- Non-homogeneous and homogeneous system of linear equations and their solutions
- 6. Numerical solutions of transcendental equations, system of equations and expansion of functions
 - Numerical solutions of transcendental equations: Regula-Falsi and Newton, Raphson methods
 - Numerical solutions of system of equations: Jacobi method, Gauss-Seidal method
 - Expansion of functions: Taylor's series, Maclaurin's series, expansions of exponential, logarithmic functions, circular trigonometric and hyperbolic functions

Course Outcomes (CO):

On successful completion of course learner will be able to:

FEC101.1. Demonstrate the basics of complex numbers, obtain the roots of a complex number using De Movire's theorem and separate the complex number into real and imaginary parts.

FEC101.2. Obtain the nth derivative of a function using successive differentiation.

FEC101.3. Apply partial differentiation technique to obtain the extremum of the given function **FEC101.4.** Apply the concepts of matrices to solve the system of linear equations.

FEC101.5. Apply the concept of Numerical Methods for solving the engineering problems with the help of SCILAB software

		1			,
CO	BL	CO	PI	PO	Mapping
FEC101.1.	2	1.1	1.1.1	PO1	3
Demonstrate the basics of complex numbers,		1.3	1.3.1		
obtain the roots of a complex number using De Movire's		5.3	5.3.1	PO5	1
theorem and separate the complex number into real and					
imaginary parts.					
FEC101.2.	3	1.1	1.1.1	PO1	3
Obtain the nth derivative of a function using successive		1.3	1.3.1		
differentiation.					
FEC101.3.	3	1.1	1.1.1	PO1	3
Apply partial differentiation technique to obtain the		1.3	1.3.1		
extremum of the given function		5.3	5.3.1	PO5	1
FEC101.4.	3	1.1	1.1.1	PO1	3
Apply the concepts of matrices to solve the system of		1.3	1.3.1		
linear equations.		5.3	5.3.1	PO5	1
		5.5	5.511	. 05	-
FEC101.5.	2	5.3	5.3.1	PO5	1
Apply the concept of Numerical Methods for	-	0.0	5.5.1		-
solving the engineering problems with the help of SCILAB					
software.					

CO-PO Manning	(BI - Blooms	Taxonomy C -	- Comnetency	, PI – Performance Indio	cator)
CO-FO Wapping.		ration on only, c =	- Competency,	r r = r e normance mun	Jacorj

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
FEC101.1	3				1							
FEC101.2	3											
FEC101.3	3				1							
FEC101.4	3				1							
FEC101.5					1							

CO-PSO Mapping:

СО	BL	С	PI	РО	Mapping

PSO1	PSO2

CO Measurement Weightages for Tools:

	Test	Lab	Assignment	SEE (O)	SEE (T)	Course Exit
						Survey
FEC101.1	30%		10%		60%	100%
FEC101.2	30%		10%		60%	100%
FEC101.3	20%		20%		60%	100%
FEC101.4	30%		10%		60%	100%
FEC101.5		100%				100%

Attainment: CO FEC101.1: **Direct Method** $A_{FECIDI 1D} = 0.3 * Test + 0.1 * Assignment + 0.6 * SEE_Theory$ Final Attainment: $A_{FEC101.1} = 0.8 * A_{FEC101D} + 0.2 * A_{FEC101.1I}$ CO FEC101.2: **Direct Method** $A_{FEC101.1D} = 0.3 * Test + 0.1 * Assignment + 0.6 * SEE Theory$ Final Attainment: $A_{FEC101,2} = 0.8 * A_{FEC101,2D} + 0.2 * A_{FEC101,2L}$ CO FEC103.3: **Direct Method** $A_{FEC101.3} = 0.2 * Test + 0.2 * Assignment + 0.6 * SEE_Theory$ Final Attainment: $A_{FEC101.3} = 0.8 * A_{FEC101.3D} + 0.2 * A_{FEC101.3I}$ CO FEC104.4: **Direct Method** $A_{FEC101.4D} = 0.3 * Test + 0.1 * Assignment + 0.6 * SEE Theory$ Final Attainment: $A_{FEC101.4} = 0.8 * A_{FEC101.4D} + 0.2 * A_{FEC101.4I}$ CO FEC101.5: **Direct Method** $A_{FEC1015D} = 1 * \Pr{actical}$ **Final Attainment:** $A_{\rm FEC101.5} = 0.8 * A_{\rm FEC101.5D} + 0.2 * A_{\rm FEC101.5I}$

Course Level Gap (if any): No Content beyond Syllabus: No

Lecture Plan: (Theory)

Module	Content	ContentHoursPlanned DateActual Date			Content Delivery Method	Remarks	
	Introduction to EM- I & Basics of Complex Numbers	15	15/11/2022	16/11/2022	Traditional		
	Prerequisite- Binomial expansion		16/11/2022	17/11/2022	Traditional		
	Prerequisite – Integration		17/11/2022	18/11/2022	Traditional		
	Prerequisite – Partial fractions		18/11/2022	21/11/2022	Traditional		
	Module 01: Complex Numbers - D' Moivre's theorem		21/11/2022	22/11/2022	Traditional		
	Module 01: Complex Numbers - D' Moivre's theorem		23/11/2022	23/11/2022	Traditional	Orientation Day schedule converted to lecture	
	Module 01: Complex Numbers - D'Moivre's theorem (Examples)		24/11/2022	24/11/2022	Traditional		
1	Module 01: Complex Numbers - D'Moivre's theorem (Examples)		25/11/2022	25/11/2022	Traditional		
	Module 01: Complex Numbers - D'Moivre's theorem (Examples)		29/11/2022	25/11/2022	Traditional		
	Module 01: Complex Numbers - Roots of a complex number			01/12/2022	28/11/2022	Traditional	Engaged BEE lecture
	Module 01: Complex Numbers - Roots of a complex number		02/12/2022	29/11/2022	Traditional	Engaged EP lecture	
	Module 01: Power to multiple and multiple to power of trignometric functions		06/12/2022	29/11/2022	Traditional	Engaged Extra class Workshop period	
	Module 01: Power to multiple and multiple to power of		08/12/2022	30/11/2022	Traditional		

	trignometric functions						
	Module 1: Revision		17/01/2023	21/01/2023	Traditional		
	Module 1: Revision		19/01/2023	21/01/2023	Traditional		
	Module 1: Revision Module 02:	11	17/01/2025	21/01/2023	Traditional		
	Hyperbolic function and Logarithm of Complex Numbers	11	09/12/2022	01/12/2022	Traditional	Engaged EP lecture	
	Module 02: Hyperbolic function and Logarithm of Complex Numbers		13/12/2022	02/12/2022	Traditional		
	Module 02: Inverse Hyperbolic function		15/12/2022	06/12/2022	Traditional		
	Module 02: Inverse Hyperbolic function		16/12/2022	06/12/2022	Traditional		
2	Module 02: Inverse Hyperbolic function		20/12/2022	07/12/2022	Traditional	Extra Lecture from Chemistry	
	Module 02: Separation into real and imaginary parts		22/12/2022	08/12/2022	Traditional	Extra	
	Module 02: Separation into real and imaginary parts		23/12/2022	08/12/2022	Traditional		
	Module 02: Logarithm of a complex number		27/12/2022	08/12/2022	Traditional	Engaged EC lecture	
	Module 02: Logarithm of a complex number				29/12/2022	15/12/2022	Traditional
	Module 2: Revision		20/01/2023	24/01/2023	Traditional		
	Module 2: Revision		24/01/2023	27/01/2023	Traditional		
	Module 03: Partial Differentiation	12	17/01/2023	29/12/2022	Traditional		
	Module 03: Partial Differentiation – Examples		19/01/2023	30/12/2022	Traditional	Converted Tutorial to Lecture	
	Module 03: Partial Differentiation - Chain Rule		20/01/2023	04/01/2023	Traditional		
3	Module 03: Partial Differentiation - Chain Rule		24/01/2023	05/01/2023	Traditional	Engaged EP lecture	
	Module 03: Partial Differentiation - Euler's Theorem and Deductions		27/01/2023	05//01/2023	Traditional		
	Module 03: Partial Differentiation – Examples on Euler's Theorem		31/01/2023	06/01/2023	Traditional	Engaged EP lecture	

[
	Module 3: Patial Differentiation- Revision		05/01/2023	12/01/2023	Traditional	
	Module 3: Patial Differentiation- Revision		06/01/2023	13/01/2023	Traditional	Engaged BEE lecture
	Module 3: Patial Differentiation- Revision		10/01/2023	13/01/2023	Traditional	Engaged EP lecture
	Module 3: Revision		27/01/2023	03/02/2023	Traditional	
	Module 3: Revision		02/02/2023	03/02/2023	Traditional	
	Module 3: Revision		31/01/2023	06/02/2023	Traditional	
	Module 04: Successive Differentiation – Algebraic problems	15	03/01/2023	16/12/2022	Traditional	
	Module 04: Successive Differentiation – Trigonometric problems		05/01/2023	26/12/2022	Traditional	
	Module 04: Successive Differentiation – Problems based on DeMoive's concept		10/01/2023	27/12/2022	Traditional	Engaged EP lecture
	Module 04: Successive Differentiation - Leibnitz Rule with Examples		12/01/2023	27/12/2022	Traditional	Engaged EM lecture of SSR
4	Module 04: Successive Differentiation - Examples on the Leibnitz Rule		13/01/2023	29/12/2022	Traditional	
	Module 04: Applications of Partial Differentiation - Maxima/Minima		02/02/2023	07/01/2023	Traditional	
	Module 04: Applications of Partial Differentiation - Maxima/Minima		04/02/2023	07/01/2023	Traditional	Engaged E.Mech lecture
	Module 04: Applications of Partial Differentiation - Maxima/Minima		07/02/2023	09/01/2023	Traditional	Engaged EP lecture
	Module 04: Applications of		09/02/2023	10/01/2023	Traditional	

Partial Differentiation - Lagrange Function				
Module 04: Applications of Partial Differentiation - Lagrange Function	03/02/2023	11/01/2023	Traditional	Engaged EP lecture
Module 04: Applications of Partial Differentiation – Revision	12/01/2023	16/01/2023	Traditional	Engaged EP lecture
Module 04: Applications of Partial Differentiation – Revision	13/01/2023	17/01/2023	Traditional	
Module 4: Revision	02/02/2023	06/02/2023	Traditional	
Module 4: Revision	03/02/2023	07/02/2023	Traditional	
Module 4: Revision	07/02/2023	07/02/2023	Traditional	

Text Books:

- 1. Engineering Mathematics-I by G.V. Kumbhojkar, J. Jamnadas Publication
- 2. Engineering Mathematics-I by Dr. N.R. Dasre, TechKnowledge Publication

Reference Books:

- 1. Advance Engineering Mathematics by H.K. Dass, S.Chand & Company Limited
- 2. Advance Engineering Mathematics by Peter O' Neil, Cengage Learning

Web References:

- 1.
- 1. 2.

Evaluation Scheme

CIE Scheme

Internal Assessment: 20 (Average of two tests)

Internal Assessment Scheme

	Module	Lecture	No.	of questions	s in	No. of questions
		Hours	Test 1	Test 2	Test 3*	in SEE
1	Complex numbers		02 (10			03(17Marks)
			marks)			
2	Hyperbolic functions		01 (5			04(25 Marks)
	and Logarithm of		Marks)			
	complex numbers					
3	Partial differentiation			02 (7		04(25 Marks)
				Marks)		
4	Applications of partial		01 (5	01 (3		03(20 Marks)
	differentiation and		Marks)	Marks)		
	successive					
	differentiation					
5	Matrices			2 (10		05 (33 Marks)
				Marks)		

Note: Four to six questions will be set in the Test paper

Verified by:

Programme Coordinator

Subject Expert